en
Boeken
Jamal Hopper

Data Bias Exposed

“Data Bias Exposed” offers a compelling examination of how machine learning algorithms perpetuate and amplify human prejudices through biased training data, affecting millions of lives in crucial areas like healthcare, employment, and financial services.
The book uniquely combines technical analysis with social justice perspectives, demonstrating how historical discriminatory practices continue to influence modern automated decision-making systems, creating what the author terms a “cycle of automated inequality.”
Through a well-structured progression, the book first introduces readers to real-world cases of algorithmic bias in familiar technologies like facial recognition and lending algorithms. It then delves into the technical and social mechanisms behind these biases, drawing from interdisciplinary research spanning computer science, sociology, and ethics. The analysis is supported by original interviews with AI researchers, affected communities, and industry leaders, providing a comprehensive view of both problems and potential solutions.
The final section presents practical frameworks for developing more equitable AI systems, making this book particularly valuable for technology professionals and policymakers. By combining rigorous analysis with accessible explanations, the author bridges the gap between technical complexity and social impact, offering concrete tools for detecting and mitigating algorithmic bias. The book's approach to balancing innovation with equity makes it an essential resource for anyone concerned about the fair implementation of AI in society.
73 afgedrukte pagina’s
Oorspronkelijke uitgave
2025
Jaar van uitgave
2025
Uitgeverij
Publifye
Artiest
Ái
Hebt u het al gelezen? Wat vindt u ervan?
👍👎
fb2epub
Sleep je bestanden hiernaartoe (maximaal 5 per keer)