rule that assigns to every element in X a unique element in Y
Kabangu Kabanguciteerde uit3 jaar geleden
The set X is the domain of the function and the set Y is its codomain. If
Kabangu Kabanguciteerde uit3 jaar geleden
THEOREM 0.1.2 (De Morgan’s Laws)
(a) (A ∩ B)c = Ac ∪ Bc.
(b) (A ∪ B)c = Ac ∩ Bc.
Kabangu Kabanguciteerde uit3 jaar geleden
region in the rectangle (which represents the universal set) that is outside the ellipses that represent the three sets is the absolute complement of the union of these three sets.
Kabangu Kabanguciteerde uit3 jaar geleden
THEOREM 0.1.1 (Distributive Laws)
(a) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).
(b) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).
Kabangu Kabanguciteerde uit3 jaar geleden
A class C(X) of subsets of a set X is called a partition of X if (1) C(X) is pairwise disjoint, and (2) the union of the sets in C(X) is the set X
Kabangu Kabanguciteerde uit3 jaar geleden
Two sets are disjoint if and only if their intersection is empty.
Kabangu Kabanguciteerde uit3 jaar geleden
both set intersection and set union possess the associative property: (1) A ∩ (B ∩ C) = (A ∩ B) ∩ C and (2) A ∪ (B ∪ C) = (A ∪ B) ∪ C.